On $F$-Weak Contraction of Generalized Multivalued Integral Type Mappings with $alpha $-admissible

Authors

  • Derya Sekman Department of Mathematics, Ahi Evran University, Bagbasi Campus, 40100 Kirsehir, Turkey.
  • Necip Şimşek Department of Mathematics, Istanbul Commerce University, Sutluce Campus, Beyoglu, 34445 Istanbul, Turkey.
  • Vatan Karakaya Department of Mathematical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210 Istanbul, Turkey.
Abstract:

The purpose of this work is to investigate the existence of fixed points of some mappings in fixed point theory by combining some important concepts which are F-weak contractions, multivalued mappings, integral transformations and α-admissible mappings. In fixed point theory, it is important to find fixed points of some classess under F- or F-weak contractions. Also multivalued mappings is the other important classes. Along with that, α-admissible mapping is a different approach in the fixed point theory. According to this method, a single or multivalued mapping does not have a fixed point in general. But, under some restriction on the mapping, a fixed point can be obtained. In this article, we combine four significant notions and also establish fixed point theorem for this mappings in complete metric spaces. Moreover, we give an example to show the interesting of our results according to earlier results in literature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Endpoints of generalized $phi$-contractive multivalued mappings of integral type

Recently‎, some researchers have established some results on existence of endpoints for multivalued mappings. In particular, Mohammadi and Rezapour's [Endpoints of Suzuki type quasi-contractive multifunctions, U.P.B. Sci. Bull., Series A, 2015] used the technique of $alpha-psi$-contractive mappings, due to Samet et al. (2012), to give some results about endpoints of Suzuki type quasi-contractiv...

full text

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

full text

Generalized multivalued $F$-weak contractions on complete metric spaces

In this paper,  we introduce the notion of  generalized multivalued  $F$- weak contraction and we prove some fixed point theorems related to introduced  contraction for multivalued mapping in complete metric spaces.  Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.

full text

on best proximity points for multivalued cyclic $f$-contraction mappings

in this paper, we establish and prove the existence of best proximity points for multivalued cyclic $f$- contraction mappings in complete metric spaces. our results improve and extend various results in literature.

full text

Strict fixed points of '{C}iri'{c}-generalized weak quasicontractive multi-valued mappings of integral type

‎‎Many authors such as Amini-Harandi‎, ‎Rezapour ‎et al., ‎Kadelburg ‎et al.‎‎, ‎have tried to find at least one fixed point for quasi-contractions when $alphain[frac{1}{2}‎, ‎1)$ but no clear answer exists right now and many of them either have failed or changed to a lighter version‎. In this paper‎, ‎we introduce some new strict fixed point results in the set of multi-valued '{C}iri'{c}-gener...

full text

On the Integral Representations of Generalized Relative Type and Generalized Relative Weak Type of Entire Functions

In this paper we wish to establish the integral representations of generalized relative type and generalized relative weak type as introduced by Datta et al [9]. We also investigate their equivalence relation under some certain conditions.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 1

pages  57- 67

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023